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Abstract. We present a framework for assessing the relative cognitive cost of 
different representational systems for problem solving. The framework consists 
of 13 cognitive properties. These properties are mapped according to two dimen-
sions: (1) the time scale of the cognitive process, and (2) the granularity of the 
representational system. The work includes analyses of those processes that are 
relevant to the internal mental world, and those that are relevant to the external 
physical display too. The motivation for the construction of this framework is to 
support the engineering of an automated system that (a) selects representations, 
(b) that are suited for individual users, (c) and works on specific classes of prob-
lems. We present a prototype implementation of such an automated representa-
tion selection system, along with an evaluation.   

Keywords: representational systems, cognitive cost, external and internal rep-
resentation. 

1 Introduction 
The motivation for (yet) another analysis of the nature of representations stems from 

our project that is building an automated approach to the selection of appropriate rep-
resentations for solving problems. The motivation and goals of the project are described 
more fully in [11]. Representation selection must take into account: (a) the type of prob-
lem, (b) the specific representational system in which the problem may live, and (c) the 
users’ abilities and familiarity across various representational systems. Expert teachers 
are able to pick alternative representations to suit each individual students’ ability for 
specific classes of problems; thus, our aim is to design and build a system that can make 
similar selections. So, what kind of aspects do we need to take into account when build-
ing an automated system? In our project, we identified formal properties and cognitive 
properties of representational systems. Further, we are developing methods to combine 
those properties with information about individual users in order to suggest candidate 
representations for them as well as rank them according to their efficacy for each indi-
vidual. In this paper, we focus on the cognitive properties. (We describe formal prop-
erties in detail in [25, 21, 20]). Fundamental to our approach is the assessment of the 
relative cognitive cost of alternative representations. Therefore, this requires us to state 
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what the cognitive properties are and to formulate cost measures for them, which will 
be used in the calculations of an overall cost of a representational system.  

Many empirical studies have been conducted on the relative benefit of selected rep-
resentations for specific tasks, such as [6, 13, 29]. However, it is unclear how these 
findings can be applied to the assessment of the cognitive costs of representations in 
general: they only address particular isolated factors. In contrast, we aim to address the 
following research questions: 
1. What are cognitive properties and where do they come from? 
2. How should cognitive properties’ relative importance be assessed in the context of 

their multitude and diversity? 
3. How can cost measures of the properties be combined to give the relative order of 

the effectiveness of representations? 
Our aim in this paper is to provide the foundational framework from which to address 
these questions. To be clear, we are not pursuing a general psychological theory of 
representational systems, but aim to engineer a system to reason about representations; 
in other words, we want to explore how to give computers the ability to select effective 
representations for humans.  Give the scope of this goal it is not possible to cover all 
relevant areas of the literature within this paper, so we have necessarily been selective. 

The framework is presented in the next section. This is followed by the presentation 
of three sample solutions to one problem in three different representational systems. 
The five sections that then follow describe classes of cognitive properties identified by 
the framework. We then present an example on how the framework has been used in a 
prototype of an automated system for representation selection. The final discussion sec-
tion reflects on the scope and limitations of our framework.  

2 Analysis Framework 
We use these abbreviations: R – representation; RS – representational system1; ER – 
external representation2; IR – internal (mental) representation; CP – cognitive property.   

A cognitive property is a feature of a representational system that influences how 
information is processed, and is thus likely to affect the cognitive cost of using the 
representation (e.g., the number of symbols in a R can affect its cognitive cost).  

By cognitive cost, we mean the cognitive load that a user experiences using a repre-
sentational system. This might be measured empirically in terms of: the time taken to 
complete a problem; the number of operations or procedures used; a rating of the mo-
ment to moment subjective effort that the user perceived; the amount of unproductive 
effort due to errors or the pursuit of unproductive solution paths. At the level of cogni-
tive processes, some of the factors that are known to underpin cognitive cost include 
(e.g., [19, 22, 5]): instantaneous working memory load; less accessible information; 
operators that take more effort to select or to apply; reduced ability to anticipate the 

 
1  Following [20], a representational system is an abstract entity from which many distinct in-

dividual representations may be created. 
2  Following [29], ERs are information and objects that exist in the external environment and 

can be perceived; while IRs are knowledge and structures in memory (p.180).  
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consequence of applying operators; the possession of poor problem-solving heuristics; 
the lack of externalised memory or free-ride inferences.  In contrast to [26]’s notation 
of cognitive cost, our approach broadens the idea to a wider range of temporal and 
granularity scales, rather than whole instructional tasks, but narrows the focus specifi-
cally on representational systems, rather than instructional interventions in general.   

A framework for cognitive properties has stringent requirements. First, it should sys-
tematically identify cognitive properties without neglecting important high impact 
properties. Second, the CPs should directly relate to established cognitive phenomena 
and accepted theoretical cognitive constructs associated with representational systems 
(e.g., [15]). Third, it should identify unique CPs that overlap minimally in scope. 

So, to define the framework, three distinct primary cognitive dimensions have been 
adopted, guided by insights from [1, 18, 23].  The space is represented in Table 1. The 
dimensions are: 

 

(1) The granularity of components of the ER: column headings in Table 1. 
(2) The type and temporal level of cognitive processing: row headings in Table 1. 
(3) Whether the component or the process is primarily associated with the ER or IR: 

see the names of some CPs in the cells of Table 1. 
 

The framework embodies the idea that, as CPs are manifestations of interactions 
between cognitive and representational systems, both are conceptualised as nearly-de-
composable hierarchical systems [23] that function over large ranges of spatial and 
temporal scales [1, 18] and are distributed between the IR and ER.   

Granularity of Components. This is a dimension ranging across the size of cognitive 
objects that encode meaning. The Symbol3 level is for elementary, non-decomposable 
carriers of concepts. Expressions are assemblies of elementary symbols, which occur 
at different hierarchical levels. The Representational System level concerns the com-
plete notational system that is used in a particular case (the representation) for problem 
solving, which may include distinct sub-representational systems (sub-RSs).  

 

Type and Temporal Level of Cognitive Processing. This dimension has two parts.  
The first part is composed of four temporal levels at which cognitive processes operate, 
ranging from 100 milliseconds to tens of minutes (for example, from the time to retrieve 
a fact from memory, to the time develop a problem solution). These levels are: (1) reg-
istration, (2) semantic encoding, (3) inference, and (4) problem solution. Registration 
refers to the process of acknowledging the existence and location of objects. The en-
coding level considers the cost of associating symbols with concepts. The inference 
level considers the cost of the arguments and difficulty of inferences. The problem so-
lution level captures the complexity of the problem state and goal structure. Relatively 
strong interactions occur between processes at a particular time scale, and relatively 
weak interactions exist between different time scales [18, 1] So, for the sake of analysis, 

 
3  Across disciplines, different terminology is used for symbols and expressions.  From a com-

putational perspective, [20] refers to primitives instead of symbols, and composites instead of 
expressions. These differences partially rise from different perspectives on what is understood 
by a basic/elementary unit, whether it is considered decomposable or not.  As this paper fo-
cuses on cognitive aspects of RSs, we have adopted cognitive oriented terminology. 
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cognitive processes at scales, differing by an order of magnitude, may be treated as 
nearly independent.  Nevertheless, short processes will impact long processes cumula-
tively.  

The second part of this dimension is a further level zero, general, in Table 1, which 
accommodates a CP that is not covered by the four temporal levels, but it is a feature 
that affects how information is processed too. 
 

Association with the ER or IR.  This third dimension is recognised because the nature 
of some process that serve the same cognitive function may actually differ substantially 
between the IR and ER, and so, they need to be explained in terms of different CPs.  
 

The CP framework builds upon the taxonomy of characteristics of effective RSs 
compiled by [5], but diverges from that work by providing an underpinning cognitively 
motivated theoretical justification for the framework’s structure.  CPs are included in 
the framework on the basis that a theoretical argument can be made that the CP impacts 
the cost of using a representation. Inclusion makes no claim that a simple measure of 
cognitive cost or practical means to compute the cost is necessarily available; this issue 
is discussed below.  As will be noted, some of our proposals need additional empirical 
support.  Before considering the CPs named in Table 1, we present the solutions to a 
problem in alternative representations to provide running examples.  

3 Sample Representations and Problem 

We selected probability problems as one target domain for our project because they are 
knowledge-rich and can be solved using a large variety of alternative representations. 
Probability tests are a good exemplar: they are an important class of problems that have 
wide application in many disciplines, but are known to be challenging for problem solv-
ers and learners. Consider this medical problem: 
 

1% of the population has a disease D. There is a test, T, such that: (i) if you have the 
disease the chance that T comes out positive is 98%; (ii) if you don’t have the disease 
the chance that T comes out positive is 3%. Suppose Alex takes the test and it comes 
out positive. What’s the probability that Alex has the disease? 

Table 1. Cognitive properties framework. 

 Notation Granularity 
Symbol Expression Representational System  

C
og

ni
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e 
T

yp
e 
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0. General  Sub-RS-variety 
1. Registration Registration-process 

Number-of-symbols/expressions 
Variety-of-symbol/expressions 

- 

2. Semantic 
    encoding 

Concept-mapping 
ER-semantic-process 
IR-semantic-process 

- 

3. Inference Quantity-scale Expression-complexity 
Inference-type 

- 
 

4. Problem  
    solution - - 

Solution-depth 
Solution-branching-factor 

Solution-technique 
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Fig. 1 shows ideal solutions in two conventional representations: algebraic Bayesian 
representation and contingency table; a third representation uses Probability Space 
(PS) diagrams [4]. PS diagrams exemplify how our framework can be applied to novel 
representations for which analysts do not have established intuitions. Also, PS diagrams 
provide an interesting test case as they integrate information about sets and probability 
relations using a coherent diagrammatic scheme that has been shown to substantially 
enhance problem solving and learning with little instruction [4]. The green text in Fig. 
1 shows values given in the problem statement shown above. 

The problem is a fairly canonical test situation, but has a complication. The test is 
not an independent trial, but depends on whether the disease is actually present or not. 
Thus, the five-line Bayesian solution (Fig. 1a) employs steps that are beyond school 
level probability: (1) Bayes’ theorem; (2) law of total probability applied to the denom-
inator; (3) De Finetti’s axiom of conditional probability. Clearly, this solution requires 
a high degree of mathematical sophistication.  

The contingency table solution (Fig. 1b) assumes that the user knows the arithmetic 
rules governing continency tables; the formulas in smaller letters at the bottom right of 
the cells. The solution progresses by successively entering given values of the problem 
statement into the cells, taking into account the arithmetic constrains. It is completed 
by selecting the values from the cells that correspond to the target condition probability 
and calculating the answer, as captured by the line below the table. Since the user must 
be proficient at using contingency tables, they should be able to handle the impact of 
lack of independence of the test and to complete only germane cells.  

Students, who do not have mathematical instruction beyond 16 years of age, can 
solve the medical problem by drawing a diagram like Fig. 1c, after just two hours of 
instruction on PS diagrams [4]. A typical solution using PS diagrams might proceed by 
sketching the sub-diagram for a binary outcome trial first: this is the horizontal line D 
in the diagram, which consists of the slightly misaligned ‘no’ and ‘yes’ sub-segments. 
Then, two more sub-diagrams are drawn within line T (below line D); each one covers 
the two test outcomes of each state of D. For example, the left sub-diagram of T (con-
sisting of two slightly misaligned segments on the left) covers the test outcome when 
the person ‘does not have the disease’ (since it is under the ‘no’ sub-segment of D) and 

 
Fig. 1. (a) Bayesian representation, (b) Contingency Table, and (c) Probability Space Diagram 

solutions to the medical problem.   
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it shows a sub-segment for when ‘the chance that T comes out positive is 3%,’ which 
is labelled with the ‘+’ sign and the ‘0.03’ value; thus, the sub-segment labelled with 
the sign ‘-’ and value ‘0.97’ represents the chance that T comes out negative. With 
kinder numbers, the diagram could be drawn to scale, nevertheless, the (green) numbers 
record the information given in the problem statement. Knowing the probability of each 
space (or sub-space), proceed to review the full diagram vertically. As required, we 
focus on the positive (+) outcomes of the test (the two middle segments labelled ‘+’ 
within T), which gives us a conditional sub-space that is represented with the horizontal 
line ‘Ans.’. Using one of the basic rules of PS diagrams, we can calculate the probability 
of the outcomes in that sub-space, by multiplying the values of the no_D and yes_T 
outcomes (0.99*0.03=0.0297), and the values of yes_D and yes_T outcomes 
(0.01*0.98=0.0098). Now, the probability of “Alex has the disease” is given by the 
portion of the conditional space that is yes_D within line ‘Ans.’ (thicker sub-segment) 
which by an approximate mental calculation, is about a quarter.  

The comparison of these examples will informally support the claims below about 
cognitive cost of different CPs. 

4 General Cognitive Property – Sub-RS-Variety 

Much of the literature on representational systems has typically focused on RSs with a 
single format and made comparisons between such unitary RSs. However, all but the 
simplest RSs are heterogeneous mixtures comprised of sub-RSs. Thus, the sub-RS-
variety is a CP, because sub-RSs are systems which must work in a coordinated fash-
ion. This entails matching information between the sub-RSs or translating information 
from the format of one into another. Impacts of multiple sub-RSs include, for instance: 
increased frequency of attention switches between sub-RSs, with all of the attendant 
delays in reactivating propositions associated with each sub-RSs; greater number of 
inference rules to handle; more opportunity for potential errors. Thus, high heterogene-
ity of sub-RSs incurs a heavy cognitive cost [27].  

Obviously, an RS is heterogeneous when it is composed of sub-RSs that would be 
independently be considered as RSs in their own right. For example, in Fig. 1a, the 
Bayesian notation operates on the quantities of probability, P(…), separately from the 
set theory notation embedded within the parentheses. More formally, sub-RSs may be 
distinguished in four related ways. (1) A part of the RS is governed by an exclusive set 
of syntactic rules, likely applied to distinct operator symbols (i.e., in [14]’s terms, it 
possesses a different format compared to the rest of the RS). (2) A part of the RS en-
codes a distinct set of domain concepts, so it may be a separate sub-RS: in the contin-
gency table representation, rows and columns encode relations among sets, whereas the 
cell entries are formulas involving magnitudes of probabilities. (3) An RS has an in-
dexing system that serves to coordinate between sub-RSs, but that does not directly 
encode domain concepts: for example, the cell labels and subscripts within the contin-
gency table. (4) A part of the RS is a sub-RS and is spatially remote from the RS: for 
instance, the equation below and apart from the contingency table in Fig. 1b. 
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Numeration systems are in themselves RSs [30], so any RS that includes numbers 
has at least two sub-RSs. This is the case in our three representations in Fig. 1. However, 
numbers may be set aside in the count of sub-RSs because every one of our represen-
tations uses them in a similar fashion. So, the differential cost of their presence across 
the three representations will be small compared to other CPs. 

The Bayesian and contingency table representations are likely to have a similar cog-
nitive cost in terms of the number of sub-RS-variety CP. In contrast, the PS diagram 
does not meet many of the criteria for the existence of other sub-RSs; in fact, it may be 
a special case of a representation without instances of other sub-RSs, and thus, its cog-
nitive cost is predicted to be less than the cost of the other two representations. 

5 Registration Cognitive Properties 

Registration is the first of the four main temporal levels of cognitive process in the 
framework. An RS has a vast number of possible features that might serve as symbols 
because any part of a feature of a graphical element could be selected arbitrarily, such 
as the ‘|’ or the ‘–’ in a ‘+’, or even their point of intersection. Registration process 
establishes what particular objects, features, or groups of objects are taken to be a po-
tential symbol (or expression), by acknowledging their existence and noting their loca-
tion in the representation.  

Registration occurs when we seek a symbol in the ER to match a concept (in the IR). 
Alternatively, we may examine an ER to find symbols in at least two ways. (1) We may 
use our knowledge about the RS. For example, the answer to a problem, in a problem 
solution, is likely to be found at the bottom of the solution – as in Fig. 1a. (2) If we are 
not familiar with an RS, then those features that vary with the RS are potential symbols 
or expressions, but constant features are not. For instance, the size of the font in the 
Bayesian example in Fig.1 is fixed, so it is not meaningful, but it would be if the for-
mulas included subscripts (as in Fig. 1b).  

The registration-process CP concerns the various types of cognitive processes that 
are used to register symbols or expressions.  The purpose of this CPs is to specify the 
relative cost arising from those processes. The processes, in order of increasing cost, 
are: (a) iconic, (b) emergent, (c) spatial-index, (d) notational-index, and (e) search. (a) 
The iconic registration process rapidly focuses attention upon 1 object or 1 group that 
is highly recognisable to the user due to its familiarity. For example, following instruc-
tion, students familiar with PS diagrams will perceive the main space (D and T lines) 
in Fig. 1c as a single object; or the symbol ‘»’ in Fig. 1a can be rapidly recognised given 
its location and shape. (b) Emergent registration processes occur when a group of sym-
bols are arranged so that they form a perceptual Gestalt (e.g., continuity, closure). For 
example, the numbers in parentheses in Fig. 1a, which are not part of the solution, but 
can be used to refer to the different algebraic statements. (c) Spatially-indexed registra-
tion processes exploit the spatial organisation in the RS, as described by [14]. (d) No-
tational-index registration processes exploit some alphanumeric system to organise or 
index objects, such as the reference letters in the contingency table of Fig. 1b. (e) Lastly, 
the registration process may default to mere search, perhaps using heuristics or just 
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exhaustively, when the other processes are unavailable (e.g., find ‘t|¬d’ in Fig. 1a). 
Although we consider our proposed order for these processes to be sensible, further 
empirical evidence is needed to confirm this order.  

The other pair of CPs at the registration level address (a) the number-of-symbols or 
expressions and (b) the variety-of-symbols or expressions.  An elementary symbol is 
a non-decomposable carrier (representation) of a concept. For example, in our three 
sample representations, symbols include: variables and mathematical operators, table 
cells, and labelled line segments, respectively. The notion of symbols also encompasses 
graphical properties of ER tokens that in themselves may encode particular concepts; 
for example, the thickness of a line segment in the PS diagram denoting the solution. 
Expressions are assemblies of elementary symbols, which occur at different hierar-
chical levels; such as algebra formulas or their parts, rows and columns of the contin-
gency table, or the horizontal lines for a particular trial in the PS diagram. In some 
circumstances we may treat expressions as single objects; e.g., dividing throughout by 
one side of an equation to obtain a form equal to unity. So just as the number of symbols 
will impact the cost of using a representation, so will the number of expressions.   

It is unlikely that the cognitive cost of the number-of-symbols CP will be a simple 
linear function of the number-of-symbols, because of the propensity of the mind to 
chunk information [16]. The same is likely to be true for number-of-expressions, as 
chunking is a hierarchical process [23].  In the Bayesian representation, the number of 
symbols including ‘P(…)’ is 14. However, the cognitive cost is more likely to be a 
count of the variety-of-symbols/expressions, as chunking does not operate directly on 
categories. For the contingency table representation, the varieties (types) include the 
table cells, variable names, and numbers.   

6 Semantic Encoding Cognitive Properties 

This set of CPs considers the cost of associating symbols and expressions with con-
cepts, that is, the establishment of meaning (not just mere existence and location as in 
the registration level). Two aspect are considered. One addresses the relation between 
concepts and things encoding them in a representation, and the other concerns the cog-
nitive processes.   

The first CP of the first aspect is concept-mapping, which applies both to symbols 
and expressions. This CP draws upon the literature on the nature of possible matches 
between symbols (tokens) and expressions in the ER and concepts in the IR [9, 17]. 
There are five ways in which matches may occur, which are described next in likely 
order of cognitive cost. As our focus is cognitive, we propose a slightly different rank-
ing to [17]. (1) Isomorphic: Matching occurs when each concept precisely matches one 
symbol; this entails the lowest cognitive cost. (2) Symbol-excess: It occurs when some 
symbols do not represent any domain concept, they only add noise to the representation. 
Normally, when a user is familiar with the representation, such noise (junk) symbols 
can be ignored without undue effort. (3) Symbol-redundancy: It occurs when one con-
cept maps to many symbols. For example, as in the Bayesian representation in Fig. 1a, 
the symbol ‘d’ appears several times. In terms of cost, some effort is required to handle 
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this, but since we are naturally able to deal with duplicated symbols and synonyms, the 
cost may not be too high. (4) Symbol-deficit: The cost increases in this case because 
there is no symbol for a concept, so the benefits of externalising memory are not avail-
able. Thus, effort must be expended to place a mental pointer to where its symbol would 
have appeared in the ER. (5) Symbol-overload: This is the worst kind of match. It occurs 
when multiple concepts map to one symbol. This has the grave potential of propagating 
error due to confusion. To avoid such errors, laborious inferences exploiting contextual 
information must be executed to mitigate such ambiguities. The contingency table and 
the PS diagram are largely isomorphic, in part because the numerical contents of cells 
of the Test negative column have been omitted from the table and the negative test 
values have been greyed out in the PS diagram, specifically to reduce symbol-excess 
for the medical problem.  Finally, regarding the proposed order for these processes, we 
are currently working on supporting these claims with empirical evidence.  

The next pair of CPs deal with cognitive processing costs. The ER-semantic-
process, which applies both to symbols and expressions, refers to five cognitively dif-
ferent types of processes that associate symbols or expressions in the ER to concepts in 
the IR; these are listed here in our proposed rank order of cost. (1) The easiest, known-
association encoding, depends on the familiarity of the user with the RS (e.g., people 
are typically familiar with numbers, such as the numbers in Fig. 1). (2) Visual-proper-
ties can be used to represent quantities. This generally has a low cognitive cost, but 
there are variations among properties that may increase the cost, such as position, length 
or angle for instance [6]. (3) The linear-order in one spatial dimension can readily en-
code information. For example, temporal sequencing of events D and T in the PS dia-
gram, or placing the result of a computation to the right side (instead of the left) of an 
equal sign in a Bayesian solution (Fig. 1a). (4) Encoding the meaning of a symbol due 
to its spatial-arrangement in 2D is more challenging and uses devices such as: coordi-
nate systems or arrays (e.g., the contingency table), hierarchical assemblies (e.g., the 
PS diagram), or networks (e.g., trees or lattices). (5) The costliest encoding is for arbi-
trary unstructured list of collections. 

IR-semantic-process is the other in the pair of CPs and applies to symbols and ex-
pressions. We identify five processes within this CP, which are presented in our pro-
posed rank order of cost (c.f., [15]). (1) The lowest are known cases, or prototypes, 
such as our understanding of the general format of a contingency table. (2) More com-
plex and costly are schemas, whose slots and fillers require more processing (e.g., PS 
diagrams are diagrammatic configuration schemes [12]). (3) IRs based on rules are 
next, which are more costly because they have fewer constrains, so effort must be ex-
pended just to identify categories and track concepts. (4) Mental-imagery is more costly 
still, because the imagery system’s limited functionality and resolution will tend to de-
mand multiple iterations of procedures [7]. (5) Propositional-networks, such as analo-
gies, are the costliest because they are largely built on simple associations, which place 
little constrain on valid inferences. The form of a given RS may suggest what IR a user 
will likely adopt (e.g., for Fig. 1a: rules; for Fig. 1b: schema; for Fig. 1c: diagrammatic 
schema). So, the ordering provided by these processes provides means to estimate the 
relative cost of the CP.  
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Note that the order of our proposed processes for ER- and IR-semantic-process CPs, 
although sensible, is something that needs to be demonstrated empirically too.  

7 Inference Cognitive Properties 

This penultimate group of CPs concerns costs at the level of making inferences. One of 
the properties in this group is quantity-scale, which concerns the type of quantity or 
measurement scale that dominates an RS, specifically, nominal, ordinal, interval or 
ratio [24]. Zhang [28] considered the role of quantity scales in the design of represen-
tational systems, and the scale hierarchy is well documented [31]. Here, we claim, fur-
ther, that as the more sophisticated scales have more information content, they will 
impose greater cognitive cost. However, it is unlikely that RSs will differ in their use 
of quantity scales, because this is substantially determined by the content of the prob-
lem. For example, all three of our examples in Fig. 1 involve quantities related to nom-
inal (manipulation of sets) and ratio (manipulation of probability quantities) scales. Ra-
ther, this CP is included because users’ degree of experience in reasoning with more 
sophisticated scales is likely to have cost implications. For this CP, we are currently 
conducting empirical studies about the relative costs of the scales.   

The next CP in the inference group is expression-complexity. Obviously, the longer 
an expression, the more components it possesses or the more tortuous it is, the greater 
the costs of using it to generate new information. For instance, it is easier to understand 
how each part of a PS diagram constrains the size of other parts than it is to work out 
how the magnitudes of variables vary in relation to each other in the Bayesian repre-
sentation. Expression-complexity may be decomposed into particular factors such as 
the depth of relations and the arity of relations. The former is the number of levels of 
nesting of relations. The latter is the number of arguments that relations take. The more 
arguments, the more information must be handled, so the greater cost [10]. For instance, 
the calculation of the final answer in the Bayesian and the contingency table solutions 
take six numbers, whereas only two are used in the PS diagram solution.   

Not all inferences have the same difficulty, so the inference-type CP considers var-
ious types, for which we propose this rank ordering cost: (1) symbol-selection (e.g., 
lookup a table cell entry); (2) assign/substitute a symbol or concept (let the top-left sub-
segment line in the PS diagram in Fig. 1c stand for no_D); (3) compare/match symbols 
or concepts; (4) select-expression; (5) substitute-expression; (6) calculate; and (7) 
transform-expression, which re-arranges the structure, resulting in a new relation (e.g., 
writing a new line in Fig. 1a; drawing a new sub-space in Fig. 1c). The Bayesian rep-
resentation in Fig. 1a is dominated by the costliest of the 7 inference-types (e.g., trans-
form-expression), but not so for Fig. 1b and 1c. Again, some empirical evidence will 
be needed to support our proposed order of processes for this CP. 

8 Problem Solution Cognitive Properties 

To capture the impact at the overall level of problem solutions, three CPs are proposed 
[19]. The first two are solution-depth and solution-branching-factor, which consider 



11 

the overall topology of the hierarchical problem state space that users of a representa-
tion generate when solving problems. Solution-depth is the number of steps on the most 
direct path between the initial state and solution. The solutions to the medical problem 
in Fig. 1 are ideal solutions, with no back-tracking nor branching, so the number of 
operations that generate the solutions is also the solution depth. The solution-branch-
ing-factor addresses the likely width of the problem space experienced by a problem 
solver. For example, the branching factor from step 1 to 2 in Fig. 1a is higher than in 
Fig. 1c: a problem solver using a Bayesian representation may need to consider several 
theorems to move from step 1 to 2; while a problem solver using the PS diagram just 
needs to draw the different events for each of those steps. A problem state space given 
by an RS offers the problem solver alternative paths to follow and it will increase costs 
in at least two ways. First, it is the simple challenge of choosing which path to follow; 
and second, many alternative paths may lead to impasses rather than solutions. Clearly, 
the heuristics possessed by a problem solver will influence the solution-depth and the 
solution-branching-factor.   

The solution-technique CP considers problem solution approaches that depend on 
the nature of the problem, which are distinct from general heuristics, and focuses on the 
nature of the procedures that are used for solutions. Two problem solutions might have 
the same breadth and depth but may vary in the variety of operators that are used to 
generate expressions. For example, a solution in a PS diagram typically involves itera-
tive applications of finding a subspace in the diagram and drawing further sub-divisions 
of them, whereas algebraic solutions invoke a larger range of operations that vary with 
the changing structure of the expressions [4]. As teachers of programming know, iter-
ative processes are typically easier to grasp and to implement than recursive processes. 
Hierarchical processes also tend to be more complex than iterative processes, because 
they require nested sub-procedures and the management of sub-goals.   

9 Example of Application 

One can envisage many uses for the CP framework [11].  It may serve as a checklist 
of factors that instructors might consider when they develop a curriculum in order to 
determine the order in which to introduce different representations. More ambitiously, 
we are using the framework to develop an AI engine that will automatically select rep-
resentations that are suited to particular problems and users with different levels of fa-
miliarity of a target pool of representations. This section of the paper summarises the 
role of the CPs framework in the development of our first prototype of a representation 
selection system called rep2rep [20] as a concrete illustration of the framework’s utility. 
In [20], the main focus is on the formal properties and the application of our framework, 
whereas the underpinning cognitive rationale is the main contribution of this paper. 

The general challenge is to develop computational mechanisms that formalise the 
CPs described by the framework in such a way that their associated cognitive costs can 
be accurately calculated – to enable the selection of effective RSs for problem solving. 

In order to meet this challenge, we need to cover two levels of abstraction. At the 
lower level we have questions such as ‘how do we count the number of symbols in a 
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representation?’ and ‘what is the expected cost of reading any of the symbols in Fig. 
1a?’ – which requires a prediction of how the physical components would be chunked 
into discrete symbols and how much time and effort it would take. And at the higher 
level, we have questions such as ‘how does the number of symbols affect the cost?’. 
For our computational formalisation, we assume-as-given some answers to the lower-
level type of questions. We only address computationally the higher level. To be clear, 
this does not mean that we have concrete answers to the lower level-type of questions. 
It only means that to turn our implementation into a full computational formalisation of 
the framework we need to plug in mechanisms that yield the lower-level values. 

Computationally, we encode representations abstractly as collections of primitive 
terms, patterns, laws, and tactics. We call these the formal components of a represen-
tation. Terms (or symbols) are assigned types, and patterns capture the idea that higher-
granularity items (composite terms) in a representation are formed from lower-granu-
larity items, all the way down to the primitive terms. Specifically, a pattern describes 
the structure of composite terms (of a certain type) which are made up from more basic 
terms of certain types. This abstraction – of patterns as the glue of composite terms – 
can capture the complexity of various grammars: from natural language, to formal 
mathematics, to graph-theoretic or geometric diagrams [20, 21]. Analogous to the way 
in which patterns describe the structure of composite terms from more basic terms, 
tactics encode the structure of inferences from more basic knowledge, all the way down 
to laws4. Moreover, the links between different representations (e.g., how the same 
problem is encoded in multiple RSs) is captured by the concept of correspondence. 
Lastly, the user's general expertise is captured simply as a value between 0 (novice) and 
1 (expert). 

Given the abstraction of representations into their formal components, the question 
now is how the CP framework is applied. For the work in [20], we formalised a version 
of each of: sub-RS variety, registration (of primitives and composite terms), concept-
mapping, quantity-scale, expression-complexity, inference-type, solution-depth, and 
solution-branching-factor5.  As stated above, the formalisation of these properties relies 
on some low-level assumed-as-givens. These take either of the following forms:  

1. Given a problem-solution representation, its abstraction into formal components is 
assumed. This means, for instance, that the question of which terms are considered 
primitive (in practice, a question of chunking) must be given. Furthermore, a value 
of importance is assigned to each component, encoding its relevance with respect to 
the solution (e.g., a component that plays no role in the solution is considered unim-
portant and given a value of 0). 

2. The assignment of cognitive attributes to components is assumed. This means, for 
instance, that whether a tactic is assigned the attribute of being a substitution or a 
calculation (see section 7), must be given. Furthermore, the parameter values for 
basic costs, associated with these attributes, are assumed. This means, for instance, 

 
4  In formal, sentential mathematics these would be called axioms, but we do not want to give 

the impression that either (i) our system only applies to axiomatic systems or that (ii) laws 
have to be as low level as axioms typically are. 

5  Other CPs, e.g., IR & ER-semantic-process and solution-technique, are yet to be implemented. 
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that the cost of a single inference which is a calculation is assumed to be twice as 
costly as that of a simple substitution. Lacking specific and accurate empirical data, 
ratios such as this one were chosen arbitrarily with the simple constraint that they 
must preserve the rank order specified by the framework. 

Given these low-level assumed values, we assign a cognitive cost for each CP using 
a variety of methods. For example, registration and inference-type costs are similarly 
computed as a sum of the basic parameter values for the given components modulated 
by importance and expertise (expertise is assumed to reduce the impact of noisy com-
ponents, as these can be ignored). Expression-complexity and solution-branching-fac-
tor, on the other hand, are computed from the branchiness and nestiness of patterns and 
tactics, respectively, with a similar effect from expertise. Quantity-scales is computed 
via the correspondences of components to arithmetic operators, and concept-mapping 
is computed via the type of relation given by the correspondence map to a fixed repre-
sentation. Sub-RS-variety is simply computed from the number of modes (a given) 
which are intended to capture individual formats used in the representation. 

Once the cognitive cost associated to each CP is computed, they are combined in a 
weighted sum, with CPs in higher cognitive level and higher notation granularity being 
assigned greater weights. Moreover, expertise is assumed to have a stronger impact on 
the cost of CPs of higher notation granularity components. 

Our prototype engine for representation selection can also be used to produce an 
informational suitability score, which estimates the likelihood that a given RS can be 
used to represent and solve a problem. An interesting question for future research is 
how the informational and cognitive computations can be used synergistically. It is 
clear that it depends on the application in which our framework is employed. Precise 
formulae for informational suitability and cognitive costs, and details of their imple-
mentation can be found in [20]. 

9.1 Evaluation 

In [20], we presented an evaluation of the effectiveness of the implementation, which 
is summarised here. Since there are no other systems to compare against, the evaluation 
was done by comparing computed measures of informational suitability6 (IS) and cog-
nitive cost against data obtained from surveying expert analysts. That is, was our system 
producing similar rankings as expert humans? The evaluation focused on the domain 
of probability and the medical problem presented in Section 3, albeit using different 
values. The RS used were Natural Language (NL), Bayes, Areas, and Contingency Ta-
ble. The computation of IS was done as stated at the start of this section, and the cog-
nitive cost function was computed considering 3 user profiles, which were set through 
the general expertise function described above. 

Eleven analysts with strong mathematical background completed an online question-
naire, which contained 2 tasks. In Task 1, participants were first shown the description 
of the medical problem. Then they were asked to give feedback on how informationally 

 
6  Information suitability measures how well a representation encodes the informational content 

of a problem and is computed using the formal properties of representations.    
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sufficient (descriptions of) RSs were using a 7-point Likert scale. In Task 2, participants 
were asked to rank the same RS descriptions, but for novice, expert and average users. 

The mean Likert score given to different RSs in Task 1 was used to derive IS ranking, 
and the mean of the rank scores across different RS was used to derive the ranking of 
different RSs for different user profiles. In terms of IS, the rank order produced from 
the rep2rep system and the analysts was similar for the most and least IS RSs (Bayes 
and NL, respectively), but different on the Areas and Contingency Table RS. Although 
the correlation was not significant, it was considered that the overall ranking produced 
by the system was sensible. In terms of cognitive costs, the rankings given by the ana-
lysts and the rep2rep system for the expert and average profiles showed high and sta-
tistically significant correlations at p<.05 (r=0.9), but not for the novice profile. A pos-
sible explanation of this result is that users’ familiarity with the RS is not yet modelled 
in the system. Details can be found in [20]. 

Overall, the results are promising in terms of the AI system being able to recommend 
effective representations – although more empirical work still needs to be done. 

10 Discussion 

To identify cognitive properties that contribute to the cognitive cost of an RS, we for-
mulated the analysis framework, as summarised in Table 1. We proposed 13 diverse 
CPs. Some relate cost to counts of instances found, some require the calculation of an 
average to represent some commonly occurring factor, and others propose ranking of 
processes as guides to relative cost. Although 13 CPs are postulated, we make no claim 
that they are exhaustive, and note that some are applicable at multiple levels of granu-
larity of RSs. A key feature and potential benefit of the framework is its differentiation 
of CPs within a two-dimensional space of cognitive level and notation granularity. 
Given a particular problem-solving process, one can use the dimension to locate its 
position within the space and, hence, the CPs that are likely to be important factors that 
impact the cost of the process in different representations. Nonetheless, CPs are not 
perfectly orthogonal. For example, the number-of-symbols will likely increase with the 
number of sub-RSs. However, the distinction between these RSs is important, not just 
because they span very different ranges in the framework, but because we can imagine 
a situation where one RS A is comprised of two sub-RSs, and a second RS B without 
sub-RSs has an equal number-of-symbols. In that case, the RS A will have a higher cost 
because of the challenges related to multiple sub-RSs. 

Whilst more extensive justification and rigorous definition could be made about the 
values of CPs and the rank order of the costs of particular CPs, we consider that the 
given notions and orders are reasonable. 

Note that the three example representations in Fig.1 encode equivalent sets of con-
cepts. If this were not the case then fair comparisons could not be made [3]. However, 
the framework does permit comparisons where the ERs of two RSs are not equivalent, 
as long as any difference is remedied in the IR content of the RS in deficit. 
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As part of our ongoing work with the framework, we are investigating how to com-
bine the CPs into a single cost measure for whole RSs. Three critical issues will need 
to be addressed. 

1. How can the disparate measures, with their different scales, be normalised so that 
they can be reasonably combined? 

2. What weighting should be given to those normalised CPs, as they naturally have 
different levels of impact? 

3. How should the weights of each CP be moderated given differences in individual’s 
expertise with alternative RSs? 

Our first prototype representation selection engine rep2rep, described in Section 9, 
provides one tentative solution to the first two issues, at least for selected CPs. More 
broadly and fortunately, the framework supports our analyses of the questions, because 
it acknowledges the range of granularity scales applicable in the use of RSs. For in-
stance, we have some basis to examine trade-offs between changes to CPs at the lower 
levels (registration, semantic encoding), which have small impacts on numerous sym-
bols and expressions, versus changes to CPs at higher levels (inference and solution), 
which impact just a few large-scale procedures.  
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